
1

Managing large and complex population operations with agent-
based models: The ALMaSS Population_Manager
Christopher John Topping1 , Xiaodong Duan1

1 Social-Ecological Systems Simulation Centre, Department of Ecoscience, Aarhus University, Aarhus, Denmark
Corresponding author: Christopher John Topping (cjt@ecos.au.dk)

Copyright: © C. J. Topping & X. Duan.
This is an open access article distributed under
terms of the Creative Commons Attribution
License (Attribution 4.0 International –
CC BY 4.0).

Methods

Abstract

We describe the method used to manage large and complicated populations of auton-
omous agent-based animal models in the Animal Landscape and Man Simulation Sys-
tem, as implemented in the ALMaSS Population_Manager class. Using three examples,
we show how this approach facilitates the representation of populations in a mixed
serial and parallel computer model, contributes to the efficiency of code operation and
allows detailed behavioural representations to be modelled.

Key words: ALMaSS, Agent-based model, multi-threaded software, scheduling, simulation

Introduction

The Animal Landscape and Man Simulation System (Topping et al. 2003) has
been continuously developed since the late 1990s (Topping 2022). At its core
are two main components: the landscape simulation and the population man-
agers. These components have never been fully presented despite being essen-
tially unchanged in core design since the early ALMaSS versions until now. This
article provides a description and some indications of the functionality of the ba-
sic approach to managing populations and an updated description of the model.

The role of the population manager in ALMaSS is to hold and manipulate
lists of entities (typically agents) that are the focus of a particular model. It is
responsible for scheduling actions by agents or other population objects and
reporting the population status.

ALMaSS is written in C++ and uses a solid object-oriented approach in its
design, which is used to tailor instances of the population manager to specif-
ic purposes, such as a skylark population manager or a ladybird population
manager. The concept used is that all approaches common to all population
managers are defined in the base class Population_Manager and those that
are specific to a particular case are defined in descendant classes that inherit
the base class code. Inheritance is a pillar of object-oriented programming. The
Population_Manager class structure also uses polymorphism, whereby inherit-
ed code can be altered in descendent classes. For example, the DoFirst method
described below is re-implemented differently for every population manager
class, allowing each specific case to exhibit its own behaviour. The use of the

Academic editor: Matthias Filter
Received: 19 December 2023
Accepted: 13 February 2024
Published: 6 March 2024

Citation: Topping CJ, Duan X (2024)
Managing large and complex
population operations with agent-
based models: The ALMaSS
Population_Manager. Food and
Ecological Systems Modelling Journal
5: е117593. https://doi.org/10.3897/
fmj.5.117593

Food and Ecological Systems Modelling Journal 5: е117593 (2024)
DOI: https://doi.org/10.3897/fmj.5.117593

https://orcid.org/0000-0003-0874-7603
https://orcid.org/0000-0003-2345-4155
mailto:cjt@ecos.au.dk
https://doi.org/10.3897/fmj.5.117593
https://doi.org/10.3897/fmj.5.117593

2Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

Population_Manager class and its descendants is an example of abstraction
and encapsulation. As such, the details of the workings of the class are kept
within itself, hiding this and the associated data from other parts of the code.
This design means that the Population_Manager class is a fully functional enti-
ty with an interface to the rest of the ALMaSS simulation.

Interestingly, although potentially highly influential on the outcome, the manage-
ment of populations of agents in population models seems to have received scant
attention in literature. Weimer et al. (2019) note that in agent-based models, a ran-
dom sequence is the norm, but without explanation and that books and introducto-
ry texts either ignore the issue of scheduling entirely (e.g. Bonabeau (2002); Macal
(2016)) or apply a random scheduling (e.g. North and Macal (2007)). Older models
sometimes also used a fixed schedule order (for example, DeAngelis et al. (1980)).

Some model systems do provide methods for altering scheduling, such as Re-
past Symphony (North et al. 2013), which includes a Scheduler class to manage
lists of agents. Still, the consequences of this are rarely considered. The sched-
uling methods used affect important characteristics, such as the simulation’s
efficiency, the algorithm’s flexibility and adaptability and even the outcome of
the simulation itself. For ALMaSS, these are described here. New types of multi-
agent systems are also emerging, such as Microsoft’s AutoGen1 and crewAI2 for
managing AI agents. However, here, the number of agents is low and the focus is
on specifying the interface between agents rather than managing large numbers.

As ALMaSS is a framework for modelling the base Population_Manager
classes, it must be constructed to allow maximum expression in the specific
models that are derived from it. This expression was attempted using a stan-
dard structure that can be adapted using an object-oriented approach in descen-
dent classes. To exemplify this, we provide a minimalist ALMaSS species model
to explore the consequences of the population management methods used.

Methods

The primary code entity described here is the Population_Manager class and
its design. The Population_Manager is the main controlling structure for mod-
elling the populations of agents within ALMaSS. It is presented below, followed
by examples demonstrating the utility of the design implemented in ALMaSS.

Population_Manager derived classes

The Population_Manager class is itself derived from the Population_Manag-
er_Base. The latter contains all the information needed by the agent-based and
any other potential type of population manager. The Population_Manager class
inherits all aspects of the base class; thus, the functionality is described below
as belonging to the descendent class, but where noted below, it is implemented
in this base class.

The Population_Manager is never actually used to instantiate an ob-
ject; instead, it is always used to create a derived class object, for example,
Skylark_Population_Manger, which is then implemented for use. The derived

1 https://microsoft.github.io/autogen/blog/2023/12/01/AutoGenStudio/
2 https://github.com/joaomdmoura/crewAI

https://microsoft.github.io/autogen/blog/2023/12/01/AutoGenStudio/
https://github.com/joaomdmoura/crewAI

3Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

class inherits all the Population_Manager functionality. It adds model-specif-
ic information, such as the number and type of life stages and all necessary
input/output to manage the simulations for the species under consideration.
This added functionality includes any species-specific output formats used for
this species only. This class structure allows further differentiation for future
and more specific models. For example, the class hierarchy for beetles current-
ly comprises three levels (Fig. 1), with all common beetle input/output (e.g. an
array for calculating daily day-degrees for egg development) residing in a Bee-
tle_Population_Manager and specific information in descendent classes (e.g.
ladybird specific reproductive management). Each derived class may include a
large degree of specialised functionality; however, this article only covers the
use of the generic capabilities of the base Population_Manager class.

Figure 1. The current class hierarchy for beetle population managers, starting with the parent class Population_Manager_Base.

Population manager design

The Population_Manager class structure

Class data structures

The core of this class is a list of all individuals present in the population, which
is the most important data structure used. In the original ALMaSS design, the
population manager held all individuals in agent-based models in a data struc-
ture with a variable number of entries, one for each life stage represented as
a separate class in the model. This means that this data structure must be
traversed serially in scheduling and other operations and, for simulations with
many organisms, this is inefficient. However, a relatively easy option exists for
managing these lists in parallel with modern CPUs and code libraries. This op-
tion is now implemented in the current version of the population manager code.

Instead of having a single list for each object type, the list of objects is
now created as a set of lists, one for each thread. These are denoted as ‘The-
SubArrays’ within the program code. ‘TheSubArrays’ is a vector of vectors of
forward_list. Vectors are arrays that can change in size during run time and
are randomly accessed, thereby allowing the number of lists to be altered at
run time to match the number of threads. A forward_list is a C++ container
for a singly-linked list (each object points to the next), which is an efficient
way to manage a list of objects that can be added to by pushing objects on

4Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

to the end of the list. These two flexible structures mean that the size of the
population can be determined at run-time and can be easily manipulated by
descendant classes.

The first dimension of ‘TheSubArrays’ represents the types of population
entities managed by the population manager, typically the life stages of the
modelled organism. This approach allows descendant classes to change the
number of life stages modelled by changing the first dimension. The second
dimension of ‘TheSubArrays’ is the thread number, enabling parallel running
when more than one thread is used. If only a single thread is used, the simula-
tion is run sequentially. Thread-based parallel computing was implemented us-
ing OpenMP (Chandra 2001). The third dimension of ‘TheSubArrays’ is the list
of individuals at each life stage manipulated by each thread. The length of this
list will change with time during the simulation as individuals die or are born.

Scheduling

The key feature of Population_Manager is the method used to schedule and
manage simulated individuals’ behaviour. The top-level ALMaSS simulation
loop is called from the main scheduling loop, which can be set to loop as many
times as necessary to simulate the desired length of the time step (usually one
day or 10 minutes in the models created to date). For each time step, the period
is separated into ‘pseudo time’, which shares some components of sequential
real time, but also allows complex time scheduling of activities, further detailed
below. Before each time step can start, some specific fixed actions are need-
ed. The first is to delete the objects of dead individuals from the previous time
step and distribute the live individuals evenly to the threads, which results in the
release of their allocated memories and optimises the use of the threads. The
following action indicates that all individuals are ready to start the time step by
a simple flag set for each individual. This flag is critical to the following sched-
uling process. The flag is called StepDone and is set to false for all objects in
‘TheSubArrays’. Before any output is carried out, the final action is to carry out
any required ordering of the lists in TheSubArrays. This reordering is typically to
randomise the order of the lists, but can be set to order, based on characteristics
such as location. Different orderings have different purposes and randomising
the list is the best way to ensure that the order of individuals’ actions does not
affect the outcome, thus avoiding concurrency issues (Topping et al. 1999).

Following the initial set of actions, the main scheduling process is started. It
consists of a higher-level sequence containing an iterative loop. The schedul-
ing process includes three main methods: BeginStep, Step and EndStep, each
preceded and followed by a customisable ‘Do’ method (Fig. 2). Parallel running
occurs in all three methods for each life stage. However, these can be changed
to run serially by setting the number of used threads to one. There is no parallel
running across life stages because this is a design feature of the behavioural
models (see the Skylark foraging example below). The four ‘Do’ methods are
customisable by descendent classes and have no functionality in the Popula-
tion_Manager classes. In descendent classes, they can be used for manipulat-
ing the lists, the environment or input-output as needed. In the example below
(‘Theoretical1’), only the DoFirst method is used. However, more complex mod-
els may require implementing all four methods.

5Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

‘BeginStep’ and ‘EndStep’ have similar structures. Each iterates through all ob-
jects in parallel, depending on the number of threads and calls their ‘BeginStep’
or ‘EndStep’ methods, respectively. This process allows one type of behaviour or
sets of behaviour to be selected at the beginning and end of a time step. ‘Step’
differs in that for this process, each object is called once following the order
of objects in ‘TheSubArrays’; it is also performed in parallel, depending on the
number of threads used. This procedure is repeated for each object that did not
set the flag ‘StepDone’ to true. Thus, all objects that did not signal that they fin-
ished the ‘Step’ process are called in the order of objects in ‘TheSubArrays’. The
Step completes when all objects signal that ‘StepDone’ is equal to true. The cur-
rent implementation of the step process requires only one iterative sub-process,
which is assigned to Step, a pragmatic decision, based on need. To date, there
have been no situations where ‘BeginStep’ and ‘EndStep’ needed to be iterative.

The emergent behaviour from the overall time step processes is that behaviour
can be scheduled for different life stages differently, such that complex interac-
tions between life stages can be simulated. It also implements a state machine
for the ‘Step’ process, allowing highly flexible behaviour sets to be simulated. A
final touch to the iterative process is that an individual object can force another
to return to the Step code by altering its ‘StepDone’ flag. This “event” facility is
particularly useful for closely-connected objects, such as pairs or family groups.

Combining scheduling and parallel processing

Several agents in the same life stage run simultaneously when the individuals
are looped inside the three-step methods; this is the critical procedure to ac-
celerate the simulation running. However, this can cause problems when more
than one individual accesses the same resources. The issue here is the simul-
taneous use of a resource by multiple agents. In this case, both may assume
that they obtain it. These situations would result in serious program bugs and
be challenging to track. To avoid this, we introduce a “guard map” for the land-

Figure 2. The time step processes. The three parts of the time step (BeginStep, Step, EndStep) process can run in mul-
tithreaded mode for each object 1 to n, extant at that time and are separated by customisable methods for reporting or
list management by the Population_Manager class.

6Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

scape by segmenting the landscape into non-overlapping grids. Each grid has
a “guard flag” to ensure that only one individual can perform location-related
activities in a single grid. Before an individual tries to perform an activity in a
specific location, it must possess the “guard flag” for that location. This “guard
flag” stops other agents from carrying out behaviour here and, once the be-
haviour is completed, the flag is released. If the behaviour is triggered from the
‘BeginStep’ or ‘EndStep’ functions, the agent will simply wait and try the action
again later in that time-step section when the flag is released. An enforced wait
is needed because only one loop is executed in the ‘BeginStep’ and ‘EndStep’
functions. In the ‘Step’ function, waiting is unnecessary per se since it can be
skipped automatically and the next individual will be called. Since the ‘Step’
function is iteratively called until all agents report ‘StepDone’ is true, the agent
will automatically wait and try again in the next loop. Loops will continue un-
til all individuals’ ‘StepDone’ flags are “true” in the ‘Step’ function, allowing all
agents to complete their actions and release the guards.

Results

Population manager utility

Before-step actions

This example illustrates the use of before-step actions. These can do nothing,
randomise the list or sort based on the x- or y-coordinate (this last option is
for single-threaded execution only). To demonstrate the necessity of this func-
tionality and the need for care in selecting the order of execution, we created a
very simple ALMaSS individual-based model, ‘Theoretical1’, which represents
animals competing for a limited resource. The model represents competition
for food, which is provided to match the needs, based on the number of individ-
uals (each gets 1.0 units). However, they will forage randomly and get 0.5–1.6
food units daily. Food is translated directly to growth. Each day, each individual
selects another at random. If it is 20% larger than the other individual, it can eat
that individual and grow 0.5% of the eaten individual’s size. Fig. 3 shows the
results of running this scenario for 36 months with BeforeStepActions set to do
nothing or to randomise the execution order. With ‘do nothing’ selected as the
before-step action, the fixed ordering of execution provides a significant advan-
tage to the first animals to feed since they can grow faster and eventually eat
the others. This results in a higher maximum size, a lower minimum size and a
declining population size. However, with ‘randomise’ selected as the before-step
action, the randomised order of execution is enough to ensure that no individual
gains sufficient advantage to eat another. Neither one version nor the other is
necessarily right; this depends on what the model should represent, but this ex-
ample shows the importance of considering the order of execution in a model.
Outcomes can be considerably altered by choosing the wrong representation.

Skylark foraging

Here, we demonstrate the utility of the step design using the skylark model
(Topping and Odderskaer 2004; Topping et al. 2013). This example also serves
to explain the use of ‘pseudo-time-steps’. The problem of the skylark relates

7Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

to foraging and the timing of activities, including multiple life stages and their
interactions. Skylarks are territorial and their food is foraged from the area sur-
rounding the territory. However, the amount of forage (insects) changes dai-
ly depending on the vegetation’s state and the weather. For a time-step, the
events that are needed to be scheduled are:

a. Assess the food availability around the territory
b. Male foraging
c. Male energetic costs filled
d. Male feeding chicks
e. Female foraging
f. Female energetic costs filled
g. Female feeding chicks
h. Chick growth

In the real world, all these types of behaviour are integrated over the day as
a series of ongoing activities. Since the time-step of the model is one day, this
integration is impossible. Still, it is possible to replicate the overall time-step
behaviour using the BeginStep, Step, EndStep algorithm.

To manage the behaviour, the first action is to order the processes logically so
that no process depends on another that follows it. In this case, the order can be
defined as a – h above. Thus, the male’s first activity is to determine the forage
amount available (which is also communicated to the female). He then collects
the forage, removes his energetic needs and finally allots portions to each chick.
All of this behaviour is carried out in the BeginStep. In the Step, the female uses

Figure 3. Change in the maximum and minimum sizes and population numbers for two scenarios using the Theoretical1
species, N = do nothing, Rand = randomise the execution order.

8Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

the information gathered by the male to determine the forage available, sub-
tracts her needs and allots food to the chicks. In the EndStep, the chicks use the
information on allotted forage and then determine their daily growth. As noted,
these activities are integrated over the day in the real world. Using this method
and viewed outside of the time-step, this integration is also the case. However,
the separation of the time-step into ‘pseudo-time’ allows this integration to be
carried out computationally efficiently. The alternative would be complicated
and require multiple iterations through the life stages as each carries out part of
the time-step, thus incurring a higher overall computational cost.

The multithreading running

For the third example, we aim to illustrate the impact of varying thread counts on
the execution time. The ‘Theoretical2’ example involves the creation of 10,000
animal objects. For each time-step, the population experiences 1040 new-born
animals with 1000 dead animals, resulting in a gradually expanding population.
Each animal is composed of a data structure containing 1,000 real number
values. Within the Step function, 10,000 calculations, each squaring a double
value, are performed for each animal and no other functionalities are associat-
ed with ‘Theoretical2’ animals. All the simulations were run using the same ten
by ten km landscape and each run had a duration of 5 years. The ALMaSS sim-
ulations require the landscape, but, in this simple example, the landscape does
not affect the difference in the run time since Theoetical2 does not interact with
it. The run time depends entirely on the number of threads and the population
size. The run time for different thread counts is presented in Table 1. Employing
multithreading yields a notable reduction in run time, with an improvement of
63% when using five threads. Leveraging more threads further accelerates the
processing speed, although the rate of improvement gradually diminishes. A
computing node with 2x Intel® Xeon® Gold 6130 CPU (X86-64) was used to
run the simulations in Table 1. Each CPU has 16 physical cores, supporting 32
threads with Hyperthreading. The base frequency is 2.10GHz. The number of
used threads was set by OMP_NUM_THREADS using OpenMP. The ALMaSS
code was compiled using GCC12 using C++17 standard on Ubuntu 22.04.

Discussion

Since its release, ALMaSS and the Population_Manager class have been used to
simulate a wide range of species ranging from highly numerous beetles, where
simulations are recorded with > 50 million concurrent agents. Species modelled
include beetles, spiders, newts, skylarks, hares, roe deer with highly detailed
10-minute time-step behaviour (Jepsen and Topping 2004) and even people (Wil-
liams et al. 2018). In the roe deer model, the time-step facility was used to allow
communication between mother and young and simulate bouts of lactation. One

Table 1. Running time with different thread numbers. Each CPU core supports two threads.

Number of Threads 1 5 10 20 40

Running time in second 443 164 129 112 103

Relative to running time with one thread 1 0.37 0.29 0.25 0.23

9Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

of the latest models under development combines complexity and numbers to
simulate every individual in a honey-bee colony (Duan et al. 2022). The single iter-
ative Step function has been enough to model all the time-step complexity need-
ed for all these species. However, there is no technical reason that both the Be-
ginStep and EndStep could not be managed in the same way if needed, permitting
even more detailed and interactive behaviour to be modelled for future species.

‘Theoretical1’ is a minimal implementation of an ALMaSS agent-based mod-
el. This publication provides the code to show how this model was implement-
ed and provides the basis for developing new models (Appendix 1). Although
ALMaSS is designed to generate realistic species representations, it can also
be used to create ‘toy models’ such as the one used here. Although these mod-
els are usually used to understand the general properties of systems, they can
also be used to develop tests of code or behaviour in isolation from other com-
plicating factors. Here, in effect, we used the model to test the consequences
of execution order in the absence of other dynamics. Although this is known
to affect cellular automata models (Fatès 2014) and agent-based models
(Weimer et al. 2019), there appear to be very few published data on effects.

The results of the simple food scenario raise some interesting points. During
testing, it was clear that the precise results depend on the size of the benefit of
the rate of growth when eating another individual and, therefore, the chance of
a single individual diverging enough from the rest of the individuals to be able
to start to eat them. This model is somewhat similar to the seminal work on
individual-based models modelling wide-mouth bass in a fish tank (Deangelis et
al. 1980). This model was probably the first to demonstrate how individual vari-
ation could lead to positive feedback. However, as suggested previously (Top-
ping et al. 1999), the precise outcome of this variation may depend on how the
simulation is set up. Here, we showed that randomising the order of execution
to prevent one individual from gaining an arbitrary advantage over the others
can remove the positive feedback, resulting in no important individual variations.
This result indicates that care needs to be taken in interpreting the application of
an execution order when designing and building agent-based models. However,
the precise effect achieved depends on the parameter values and strength of un-
derlying dynamics. In this case, if the benefit from eating another animal were in-
creased, it became difficult to remove the effect using a randomised order alone.
Whether these effects are important in more realistic population simulations in
landscapes is debatable. In this simple model, there is no spatial constraint on
interactions, which will strongly reduce the observed effects whilst also causing
feedback loops of their own, for example, interactions in local populations may
ignore global dynamics. Despite this caveat, it is important to be aware of the
potential for artefact creation if the execution order is not handled correctly.

ALMaSS run times are often very long and CPU development has been geared
towards expanding the number of processing cores rather than continuing the
increase in CPU speed seen in the 1990s to early 2000s. Hence, to increase ef-
ficiency in exploiting modern CPU architecture, ALMaSS needed to address the
potential to use multiple cores. ‘Theoretical2’ represents a minimalistic imple-
mentation of the ALMaSS agent-based model to demonstrate the potency of mul-
tithreading capabilities. The flexibility inherent in its multithreading implementa-
tion is noteworthy. By configuring the thread count to 1, the model transforms

10Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

into a sequential computation equivalent to the original ALMaSS implementa-
tion. As the thread count increases, the speed enhancement increase is reduced.
This phenomenon might be attributed to the synchronisation overheads associ-
ated with managing threads, which aligns with the complexity of the simulation
process. This result also suggests that complex models could benefit more from
multithreaded code than initially anticipated since these models are usually com-
putationally heavier compared to the cost of managing multi-threads.

Factors that affect this change in efficiency include the guard-map size and step-
code complexity. The guard-map resolution will determine the frequency of thread
locking in space; hence, the finer this can be, the fewer locks are needed. However,
the guard-map grid size cannot be too small since interactions may occur beyond
it, especially in the case of broad area interactions (e.g. a density-dependent calcu-
lation working on an area larger than 1 m2). Step code complexity will also affect
the optimal thread number needed. In an extreme case where the step code is
empty, it will result in a simple loop; in this case, the optimal thread number will
always be one. Hence, we cannot yet provide precise guidelines regarding the best
thread number to choose; it will depend on the simulation being run.

As noted above with the guard-map, when implementing multithreaded code
in an ALMaSS model, some care is needed to ensure that key activities where
individuals interact with the same resource cannot occur during parallel pro-
cessing tasks, such as ladybirds eating aphids in the same location. We have
created the guard-map to control access to spatially-related resources, which
includes other agents. Functions are provided to claim a guard, based on the
individual’s location when it is doing location-related activities, for example,
moving to a new location or eating resources from a location and release the
guard when the individual finishes its’ location-related activities. However, there
is one case in which this method cannot protect the multithreaded code. The
guard-map fails if an agent can kill another agent of the same type at the same
location. For example, two adult ladybirds, one eating the other. The possibility
of this kind of interaction needs to be considered in new models and multi-
threaded code should be disabled if this is the case.

Conclusions

The ALMaSS Population_Manager class has stood the test of time for more than
20 years and has not had a major update until now. The current implementation
introduces the new multithreaded code feature for efficiency, which provides
significant gains in processing time with minimal increase in memory footprint.

The scheduling of ALMaSS agents provides the flexibility to describe com-
plex behaviour and interactions between agents. However, how the scheduling
should be implemented for a specific model should be an active choice to avoid
the potential for artificial bias in the outcomes.

Additional information

Conflict of interest

The authors have declared that no competing interests exist.

11Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

Ethical statement
No ethical statement was reported.

Funding
This work was partially supported by DeiC National HPC (UCloud, GenomeDK, LUMI)
(g.a. DeiC-AU-N1-000025, DeiC-AU-L5-0011 and DeiC-AU-N2-2023015) and by the
EcoStack project funded by the European Union's Horizon 2020 Research and Innova-
tion Programme under Grant Agreement no. 773554.

Author contributions
Conceptualization: CJT. Formal analysis: XD. Methodology: CJT. Software: XD, CJT. Writ-
ing - original draft: CJT. Writing - review and editing: XD.

Author ORCIDs
Christopher John Topping https://orcid.org/0000-0003-0874-7603
Xiaodong Duan https://orcid.org/0000-0003-2345-4155

Data availability
All of the data that support the findings of this study are available in the main text or
Supplementary Information.

References

Bonabeau E (2002) Agent-based modeling: methods and techniques for simulating hu-
man systems. Proceedings of the National Academy of Sciences (PNAS) 99(Suppl
3): 7280–7287. https://doi.org/10.1073/pnas.082080899

Chandra R (2001) Parallel programming in OpenMP. Morgan kaufmann, 240 pp.
Deangelis DL, Cox DK, Coutant CC (1980) Cannibalism and Size Dispersal in Young-of-

the-Year Largemouth Bass - Experiment and Model. Ecological Modelling 8: 133–
148. https://doi.org/10.1016/0304-3800(80)90033-2

Duan X, Wallis D, Hatjina F, Simon-Delso N, Bruun Jensen A, Topping CJ (2022) ApisRAM
Formal Model Description. EFSA Supporting Publications 19: 7184E. https://doi.
org/10.2903/sp.efsa.2022.EN-7184

Fatès N (2013) A Guided Tour of Asynchronous Cellular Automata. In: Kari J, Kutrib M,
Malcher A (Eds) Cellular Automata and Discrete Complex Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, 15–30. https://doi.org/10.1007/978-3-642-40867-0_2

Jepsen JU, Topping CJ (2004) Modelling roe deer (Capreolus capreolus) in a gradient of
forest fragmentation: behavioural plasticity and choice of cover. Canadian Journal
of Zoology-Revue Canadienne De Zoologie 82: 1528–1541. https://doi.org/10.1139/
z04-131

Macal CM (2016) Everything you need to know about agent-based modelling and simu-
lation. Journal of Simulation 10: 144–156. https://doi.org/10.1057/jos.2016.7

North MJ, Collier NT, Ozik J, Tatara ER, Macal CM, Bragen M, Sydelko P (2013) Complex
adaptive systems modeling with Repast Simphony. Complex Adaptive Systems Mod-
eling 1: 3. https://doi.org/10.1186/2194-3206-1-3

North MJ, Macal CM (2007) Managing Business Complexity: Discovering Strategic Solu-
tions with Agent-Based Modeling and Simulation. Oxford University Press. https://
doi.org/10.1093/acprof:oso/9780195172119.001.0001

https://orcid.org/0000-0003-0874-7603
https://orcid.org/0000-0003-2345-4155
https://doi.org/10.1073/pnas.082080899
https://doi.org/10.1016/0304-3800(80)90033-2
https://doi.org/10.2903/sp.efsa.2022.EN-7184
https://doi.org/10.2903/sp.efsa.2022.EN-7184
https://doi.org/10.1007/978-3-642-40867-0_2
https://doi.org/10.1139/z04-131
https://doi.org/10.1139/z04-131
https://doi.org/10.1057/jos.2016.7
https://doi.org/10.1186/2194-3206-1-3
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001
https://doi.org/10.1093/acprof:oso/9780195172119.001.0001

12Food and Ecological Systems Modelling Journal 5: е117593 (2024), DOI: https://doi.org/10.3897/fmj.5.117593

Christopher John Topping & Xiaodong Duan: The ALMaSS Population_Manager

Topping CJ (2022) The Animal Landscape and Man Simulation System (ALMaSS): a
history, design, and philosophy. Research Ideas and Outcomes 8: e89919. https://doi.
org/10.3897/rio.8.e89919

Topping C, Hansen T, Jensen T, Jepsen J, Nikolajsen F, Odderskaer P (2003) ALMaSS,
an agent-based model for animals in temperate European landscapes. Ecological
Modelling 167: 65–82. https://doi.org/10.1016/S0304-3800(03)00173-X

Topping C, Odderskaer P (2004) Modeling the influence of temporal and spatial factors
on the assessment of impacts of pesticides on skylarks. Environmental toxicology
and chemistry 23: 509–520. https://doi.org/10.1897/02-524a

Topping C, Rehder M, Mayoh B (1999) VIOLA: a new visual programming language de-
signed for the rapid development of interacting agent systems. Acta biotheoretica
47: 129–140. https://doi.org/10.1023/A:1002070223107

Topping CJ, Odderskaer P, Kahlert J (2013) Modelling Skylarks (Alauda arvensis) to Pre-
dict Impacts of Changes in Land Management and Policy: Development and Testing
of an Agent-Based Model. PLOS ONE 8(6): e65803. https://doi.org/10.1371/journal.
pone.0065803

Weimer CW, Miller JO, Hill RR, Hodson DD (2019) Agent Scheduling in Opinion Dynamics:
A Taxonomy and Comparison Using Generalized Models. Jasss-the Journal of Arti-
ficial Societies and Social Simulation 22(4): 5. https://doi.org/10.18564/jasss.4065

Williams JH, Topping CJ, Dalby L, Clausen KK, Madsen J (2018) Where to go goose
hunting? Using pattern-oriented modeling to better understand human decision pro-
cesses. Human Dimensions of Wildlife 23: 533–551. https://doi.org/10.1080/10871
209.2018.1509249

Appendix 1

The source code and the running directory are publicly available at:

https://gitlab.com/ALMaSS/almass_methodology.git

See also Suppl. material 1 containing the Population_Manager code docu-
mentation.

Supplementary material 1

The code documentation for the ALMaSS Population_Manager class

Authors: Christopher John Topping, Xiaodong Duan
Data type: pdf
Explanation note: The doxygen generated documentation from the ALMaSS code for the

Population_Manager class.
Copyright notice: This dataset is made available under the Open Database License

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License
(ODbL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.

Link: https://doi.org/https://doi.org/10.3897/fmj.5.117593.suppl1

https://doi.org/10.3897/rio.8.e89919
https://doi.org/10.3897/rio.8.e89919
https://doi.org/10.1016/S0304-3800(03)00173-X
https://doi.org/10.1897/02-524a
https://doi.org/10.1023/A:1002070223107
https://doi.org/10.1371/journal.pone.0065803
https://doi.org/10.1371/journal.pone.0065803
https://doi.org/10.18564/jasss.4065
https://doi.org/10.1080/10871209.2018.1509249
https://doi.org/10.1080/10871209.2018.1509249
https://gitlab.com/ALMaSS/almass_methodology.git
http://opendatacommons.org/licenses/odbl/1.0/
https://doi.org/https://doi.org/10.3897/fmj.5.117593.suppl1

	Managing large and complex population operations with agent-based models: The ALMaSS Population_Manager
	Abstract
	Introduction
	Methods
	Population_Manager derived classes
	Population manager design
	The Population_Manager class structure

	Results
	Population manager utility
	Skylark foraging
	The multithreading running

	Discussion
	Conclusions
	Additional information
	References
	Appendix 1

