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Abstract

To reduce the burden of human society that is caused by zoonotic diseases, it is important

to  attribute  sources  to  human  illnesses.  One  powerful  approach  in  supporting  any

intervention decision is mathematical modelling. This paper presents a source attribution

model which considers five sources (broilers, laying hens, pigs, turkeys) for salmonellosis

and uses two datasets from Germany collected over two time periods; one from 2004 to

2007 and one from 2010 to 2011. The model uses a Bayesian modelling approach derived

from  the  so-called  Hald  model  and  is  based  on  microbial  subtyping.  In  this  case,

Salmonella isolates from humans and animals were subtyped with respect to serovar and

phage type. Based on that typing, the model estimates how many human salmonellosis

cases can be attributed to each of the considered sources. A reference description of the

model is available under DOI: 10.1111/zph.12645. Here, we present this model as a ready-

to-use  resource  in  the  Food  Safety  Knowledge  Exchange  (FSKX)  format.  This  open

information exchange format allows to re-use, modify, and further develop the model and

uses model metadata and controlled vocabulary to harmonise the annotation. In addition to

the model, we discuss some technical pitfalls that might occur when running this Bayesian

model based on Markov chain Monte Carlo calculations. As source attribution of zoonotic
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disease is one useful tool for the One Health approach, our work facilitates the exchange,

adjustment, and re-usage of this source attribution model by the international and multi-

sectoral community.
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Introduction

Zoonotic  diseases  are  a  major  burden  for  human  society.  The  burden  relates  to  two

categories: 1) human health burden in form of mortality and morbidity (Taylor et al. 2001)

and 2) economical burden, e.g., in form of losses due to health care costs (The World Bank

2012).  In  the  European  Union,  over  320,000  human  cases  of  zoonotic  disease  were

reported  in  2019  (European  Food  Safety  Authority  and  European  Centre  for  Disease

Prevention and Control 2021).

Salmonella is the second most common zoonotic disease in Europe with a stable number

of salmonellosis cases during 2014–2018 (European Food Safety Authority and European

Centre for Disease Prevention and Control 2021). Although the salmonellosis burden is

stagnating, the contribution of Salmonella serovars differs in prevalence and the source of

human  infection  (European  Food  Safety  Authority  and  European  Centre  for  Disease

Prevention and Control 2021, Jabin et al. 2019).

To reduce the human cases of zoonoses, it is important to understand the relationship of

potential  sources  and  human  illness  (Batz et  al.  2005).  In  order  to  reduce  consumer

exposure  and to  optimize  intervention  measures,  it  is  required  to  identify  the  different

zoonotic sources of human infections and quantify their relative contribution (Batz et al.

2005, Pires et al. 2009). Both can be supported by source attribution methods. A powerful

method is  mathematical  modelling.  One approach for  attributing foodborne illnesses is

based  on  microbial  subtyping.  This  approach  includes  various  methods  to  distinguish

bacterial and viral isolates from one another (Pires et al. 2009). A widely used microbial

subtyping approach combines serotyping with phage typing that is based on phenotypic

methods. In recent years further subtyping approaches based on molecular methods like

plasmid  analysis  or  whole-genome  sequencing  have  been  used  (Boysen  et  al.  2014, 

Mather et al. 2015,Munck et al. 2020,Arnold et al. 2021). Whichever method is used, the

data which describe the distribution of different subtypes in different sources can be used

to do source attribution based on mathematical modelling.

One modelling approach for source attribution that is based on microbial subtyping is the

Bayesian model. In the context of food safety, the models developed by Hald et al. (2004)

and David et al. (2013) are of special interest. Jabin et al. (2019) used the approach of

David et al. (2013) to attribute human salmonellosis to potential food sources in Germany
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using two datasets from 2004–2007 and 2010/2011. Although the mathematical model has

been published and described in detail in Jabin et al. (2019), it is not available in a ready-

to-use format. Here, we present the Bayesian model referred as Bayes data-based model

in Jabin et al. 2019 in the Food Safety Knowledge Exchange (FSKX) format. This open

information exchange format uses model metadata and controlled vocabulary to harmonize

annotations of risk assessment models (Haberbeck et al. 2018). Together with the model

script,  the  visualization  script,  and  simulation  settings,  the  metadata  are  the  key

components of the format (de Alba Aparicio et al. 2018). Thus, FSKX format facilitates the

model usage and re-usage.

The two datasets and the mathematical model by Jabin et al. (2019) are incorporated into

a ready-to-use source attribution model which can be executed, developed further, and

easily adapted to new data by the international risk assessment community. With our work,

we facilitate the exchange, adjustment, and re-usage of this source attribution model.

Model metadata

The model metadata are part of the FSKX-file (see Suppl. material 1 for the FSKX-file). For

details about the metadata schema and the used definitions see Haberbeck et al. (2018)

and  available  on  https://foodrisklabs.bfr.bund.de/rakip-harmonization-resources/ (we  use

the metadata schema Version 1.04).

General metadata

Source: PUBLISHED SCIENTIFIC STUDIES

Identifier: SourceAttributionBfRBayesDB

Rights: Creative Commons Attribution 4.0 (CC BY 4.0)

Availability: Open access

Language: English

Software: FSK-Lab 1.9.0

Language Written In: R 3

Objective:  The model  attributes  human cases of  the salmonellosis  caused by  various

serovars of Salmonella from various sources (namely, broilers, laying hens, pigs, turkeys,

and unknown). The model is parameterized using data from Germany.

Product/matrix

Name: Broilers

Description: Tons of broiler meat consumed
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Unit: Tons

Origin Country: Germany

Name: Laying hens

Description: Number of eggs consumed

Unit: Number of eggs

Origin Country: Germany

Name: Pigs

Description: Tons of pork consumed

Unit: Tons

Origin Country: Germany

Name: Turkeys

Description: Tons of turkey meat consumed

Unit: Tons

Origin Country: Germany

Hazard

• Type:  Microorganisms;  Name:  Salmonella Enteritidis;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Enteritidis  (Salmonella Enteritidis  or  S.E.  for  short)  which  were  further  typed

according to their phage type (Phage types: S.E. PT 1, S.E. PT 11, S.E. PT 14b, S.

E. PT 19, S.E. PT 2, S.E. PT 21, S.E. PT 21c, S.E. PT 25, S.E. PT 35, S.E. PT 4,

S.E. PT 4a, S.E. PT 4b, S.E. PT 5a, S.E. PT 6, S.E. PT 6a, S.E. PT 7, S.E. PT 7a,

S.E.  PT  8,  other);  Unit:  %;  Adverse  Effect:  The  most  common  symptoms  of

salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type: Microorganisms; Name: Salmonella Typhimurium; Description: The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Typhimurium (Salmonella Typhimurium or S.T. for short) which were further typed

according to their phage type (Phage types: S.T. DT001, S.T. DT007, S.T. DT008,

S.T. DT009,  S.T. DT012,  S.T. DT017,  S.T. DT040,  S.T. DT041,  S.T. D066,  S.T.

DT099, S.T. DT104, S.T. DT120, S.T. DT126, S.T.. DT139, S.T. DT195, S.T. DT208,

S.T.  U302,  S.T.  U310,  other);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.
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• Type:  Microorganisms;  Name:  Salmonella Agama;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Agama (

Salmonella Agama  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Agona;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Agona (

Salmonella Agona  for  short)  ;  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Anatum;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Anatum

(Salmonella Anatum  for  short)  ;  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Blockley;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Blockley

(Salmonella Blockley  for  short)  ;  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Braenderup;  Description:  The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Braenderup (Salmonella Braenderup for  short)  ;  Unit:  %;  Adverse Effect:  The

most common symptoms of salmonellosis are diarrhea, fever, abdominal cramps,

and vomiting.

• Type: Microorganisms; Name: Salmonella Brandenburg; Description: The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Brandenburg (Salmonella Brandenburg for short) ; Unit: %; Adverse Effect: The

most common symptoms of salmonellosis are diarrhea, fever, abdominal cramps,

and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Coeln;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Coeln (

Salmonella Coeln  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Derby;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Derby (

Salmonella Derby  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• type:  Microorganisms;  Name:  Salmonella Eboko;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Eboko (
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Salmonella Eboko  for  short);  unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type: Microorganisms; Name: Salmonella Give; Description: The model considers

the  prevalence  among  isolates  from  animal  samples  (pig,  broiler,  laying  hen,

turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.  Give  (

Salmonella Give for short); Unit: %; Adverse Effect: The most common symptoms

of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Heidelberg;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Heidelberg (Salmonella Heidelberg for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Hessarek;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Hessarek (Salmonella Hessarek for  short);  Unit:  %;  Adverse Effect:  The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Indiana;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Indiana

(Salmonella Indiana  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Infantis;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Infantis

(Salmonella Infantis  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Kedougou;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Kedougou (Salmonella Kedougou for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Kottbus;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Kottbus

(Salmonella Kottbus  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name: Salmonella Lexington;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Lexington (Salmonella Lexington for short);  Unit:  %; Adverse Effect:  The most
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common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Liverpool;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Liverpool  (Salmonella Liverpool  for  short);  Unit:  %;  Adverse  Effect:  The  most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Livingstone;  Description:  The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Livingstone (Salmonella Livingstone for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella London;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. London

(Salmonella London  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Mbandaka;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Mbandaka (Salmonella Mbandaka for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Montevideo;  Description:  The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Montevideo (Salmonella Montevideo for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Newport;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Newport

(Salmonella Newport  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type: Microorganisms; Name: Salmonella Ohio; Description: The model considers

the  prevalence  among  isolates  from  animal  samples  (pig,  broiler,  laying  hen,

turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.  Ohio  (

Salmonella Ohio for short); Unit: %; Adverse Effect: The most common symptoms

of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Rissen;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Rissen (
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Salmonella Rissen  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Saintpaul;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Saintpaul  (Salmonella Saintpaul  for  short);  Unit:  %;  Adverse Effect:  The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms; Name:  Salmonella Senftenberg; Description:  The model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Senftenberg  (Salmonella Senftenberg  for  short);  Unit:  %;  Adverse Effect:  The

most common symptoms of salmonellosis are diarrhea, fever, abdominal cramps,

and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Stanley;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Stanley

(Salmonella Stanley  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  Salmonella Tennessee;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen,  turkey)  which  are  positive  for  Salmonella enterica subsp.  enterica ser.

Tennessee (Salmonella Tennessee for short); Unit: %; Adverse Effect: The most

common symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and

vomiting.

• Type:  Microorganisms;  Name:  Salmonella Virchow;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which are positive for Salmonella enterica subsp. enterica ser. Virchow

(Salmonella Virchow  for  short);  Unit:  %;  Adverse  Effect:  The  most  common

symptoms of salmonellosis are diarrhea, fever, abdominal cramps, and vomiting.

• Type:  Microorganisms;  Name:  rough  Salmonella;  Description:  The  model

considers the prevalence among isolates from animal samples (pig, broiler, laying

hen, turkey) which contain rough strains of Salmonella enterica subsp. enterica with

unspecified serovar (rough Salmonella for short);  Unit:  %; Adverse Effect:  The

most common symptoms of salmonellosis are diarrhea, fever, abdominal cramps,

and vomiting.

• Type:  Microorganisms;  Name:  Salmonella -  other  serotypes ;  Description:  The

model considers the prevalence among isolates from animal samples (pig, broiler,

laying hen, turkey) which are positive for Salmonella enterica subsp. enterica with

unspecified serotype (Salmonella - other serotypes for short); Unit:  %; Adverse

Effect:  The  most  common  symptoms  of  salmonellosis  are  diarrhea,  fever,

abdominal cramps, and vomiting.
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Population

Name: People in Germany

Target Population: People in Germany that were identified by medical professionals to be

suffering from salmonellosis

Scope

The model  attributes  human cases  of  the  zoonotic  disease  salmonellosis  to  a  certain

source  (namely,  broilers,  laying  hens,  pigs,  turkeys,  and  unknown).  It  is  based  on  a

Bayesian microbial subtyping approach described by Hald et al. (2004) and subsequently

modified by David et al. (2013). Data from two datasets using information from various

years are used to parameterize the model. Both datasets are from Germany.

Temporal Information: In Jabin et al. 2019, data in Table 2 in Jabin et al. (2019) consider

human salmonellosis in the years 2004-2007 and data in Table 3 in Jabin et al. (2019)

consider the years 2010/2011. See Table 4 in Jabin et al. (2019) for details about the data

sources for Salmonella in humans.

Data background

Study Title: The role of parameterization in comparing source attribution models based on

microbial subtyping for salmonellosis

Study Description: Two datasets from active monitoring in Germany were available. The

data comprise four potential animal sources: broilers, laying hens, pigs, and turkeys. For

each considered salmonellosis case, the serotype was determined. For cases caused by

Salmonella Enteritidis  or  Salmonella Typhimurium  additionally  the  phage  type  was

determined (see Tables 2 and 3 in Jabin et al. 2019). Both datasets cover multiple years

(for details see "Temporal Information" in the Subsection "Scope" of the Section "Model

metadata" and Jabin et  al.  2019).  The data are used to analyze the source attribution

model see Section "Material and methods" and Jabin et al. (2019) for details.

Material and methods

Data

Datasets covering studies on Salmonella in different sources for two time periods were

compiled  and  used  for  this  analysis.  For  both  time  periods,  reliable  data  from active

monitoring on four potential animal sources were available: broilers, laying hens, pigs, and

turkeys. Cattle were not included in any study or program and were therefore not included

in this analysis. The datasets, which cover the years 2004–2007 and 2010/2011, are called
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baseline data and monitoring data, respectively. In addition, data on human salmonellosis

cases were considered.

Baseline data

The  first  dataset  on  Salmonella in  sources  was  generated by  four  baseline  studies

conducted  during  2004  and  2007  in  Germany  (EFSA  (2007b),  EFSA  (2007a),  EFSA

(2008b), EFSA (2008a)). These data describe the prevalence  (in %) of

each Salmonella subtype  in each source . The prevalence for all strains of

Salmonella serotypes Enteritidis and Typhimurium as well as the relevant phage types are

considered (see Jabin et al. (2019) for details).

Monitoring data

The second dataset on Salmonella in sources was compiled from monitoring programs

during 2010 and 2011 in Germany (Käsbohrer et al. 2012, Käsbohrer et al. 2013). Data for

broilers, laying hens, and turkeys were obtained from the Salmonella control programs in

poultry in 2010. Since national monitoring of Salmonella prevalence in pigs was conducted

only in 2011, the data on pigs from 2011 were combined with the poultry data from 2010,

assuming that the serotype distributions in the animals were equal in both years (see Jabin

et al. (2019) for details).

To summarize, the baseline and the monitoring data are comparable, i.e., the data were

compiled in a similar way and the intention measures in the years were the same, thus, no

significant difference in the data is expected.

Human data

Data on human Salmonella cases came from the Robert Koch Institute (RKI). The serotype

distribution was obtained via their online database SurvStat@RKI (https://survstat.rki.de/,

data access:  07.02.2012).  In  addition,  phage type information for  S.  Enteritidis  and S.

Typhimurium  strains  were  provided  via  personal  communication  by  Wolfgang  Rabsch

(RKI). Since only a subset of all strains isolated from humans had been phage typed, we

assumed that the phage type distribution among the typed strains is also representative for

the untyped strains. To account for the four year time period of the baseline studies (from

2004 to 2007), we summed up all the corresponding sero- and phage types associated

with human salmonellosis cases over that time period (see Jabin et al. (2019) for details).

Mathematical model

The presented Bayes data-based (DB) model is a source attribution model that is based on

microbial subtyping (Jabin et al. 2019). It is derived from the model developed by Hald et

al. 2004, the so-called Hald model. This model has been adopted widely (David et al. 2013,

Pires et al. 2011, Ranta et al. 2011). The variation of the Hald model developed by David et
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al. 2013 reparameterizes the Hald model which leads to an improved robustness of source

attribution estimates.

A note about terminology: the terms "subtype" and "type" are used interchangeably.

Hald model

The so-called Hald model (Hald et al. 2004) is a Bayesian modelling approach that uses

microbial  subtyping  data  to  infer  the  sources  for  observed  food-borne  illnesses  like

salmonellosis.  This  model  approach  is  based  on  inferring  a  posterior  estimate  of  the

considered outcome using prior assumptions and the use of data. In the Hald model, one

assumption is that the number of human cases of salmonellosis is Poisson distributed:

 

where  is the number of observed cases for Salmonella of subtype . The

number  of  subtypes  run  from  ,

where  is the total number of Salmonella subtypes present in the data. The number

of  sources  in  the  data  and  thus  considered  in  the  model  is  .  Here,

 is the number of expected cases caused by Salmonella subtype 

in  source   (with   running  from

).  The  Hald  model  defines

 as follows:

 

where  is the amount of source  consumed (in tons, except

for laying hens where it is number of eggs). The values  (in %) for the

prevalence  of  Salmonella subtype  in  the  source .  The

parameter   is  a subtype-dependent  factor  which describes the ability  of  the

Salmonella subtype   to  cause  illness.  The  parameter  is  a  source-

dependent  factor  describing  the  ability  of  source   to  serve  as  a  vector  for

Salmonella.  Equation  2  represents  the multiparameter  prior  of  the  model  with  the two

parameters   and   of  unknown  value.  For  the  parameter

 and , uniform distributions where defined as prior distributions.

David model—a variation of the Hald model

Some authors describe difficulties with the convergence of the Hald model (Guo et al. 2011

,  Mullner  et  al.  2009).  To  address  this  issue, David  et  al.  (2013) proposed  a

reparameterization of the Hald model based on unique types (or “specific types” as called

in David et al. (2013)). A unique type is a subtype that is specific to a food-source and

consequently  is  not  found  in  another source  under  consideration.  If  there  are  one  or
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multiple unique types for a source  in the considered data, then the corresponding

unique  subtype-dependent  parameters   for  these  unique

types are parameterized according to Equation 3 instead of Expression 6. The subscript,

“ut” stands for unique type.

 

This reparameterization can only be done if all serotypes are phage typed. As not all the

data of  serotypes Enteritidis  and Typhimurium considered by David et  al.  (2013) were

phage typed, both serotypes were excluded from the reparameterization (see Section 2.2.5

in David et al. 2013).

Bayes data-based (DB) model—a variation of the David model

Following the idea of David et al. (2013) to use unique types for parameterizing the Hald

model, the Bayes DB model uses the following parameterization setup:

1. Parameterization of the subtype-dependent parameter 

• For each source , choose freely one unique type and call the corresponding

subtype-dependent parameter  (if available)

• Parameterize  for the chosen unique type according to

Equation 3

• If there are no unique types, parameterize all  according to Expression 6

2. Parameterization of the source-dependent parameter 

• For each source  where no unique type is available ,  the corresponding

parameter  is defined as ("nut" in subscripts stands for

"no unique type"):

 

• This also applies to the case that no source has a unique type.

3. Parameterization of the consumption data 

•  is set according to consumption data (this is the case for the

presented Bayes DB model).

• If  no  consumption  data  are  available,  all   are  set  to

appropriate  constant  values.  The  values  need  to  be  large  enough  to  assure

consistent model results. These constant values are found through trial and error

and  depend  on  the  considered  dataset  (for  details  see  Section  "The  effect  of

consumption data on the consistency of source attribution estimates").
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To estimate unknown parameters, uniform distributions are assumed as prior distributions

for   and   (see  Expressions  5  and  6,  respectively).  Unknown

parameters are: 1) all  which belong to non-unique types, 2) unique 

which have not been chosen according to the first step of the parameterization setup, 3)all

 which correspond to sources  which have at least one unique type.

Note that  is always set to a fixed value. Consequently, if there are

no unique types,  all   are  parameterized according to  Equation 4  and all

 according to Expression 6.

In the model presented in this paper the following prior distributions were assumed:

 

 

The the limits  of  the  prior  distributions  were chosen such that  they produce complete

posterior distributions for both datasets (baseline and monitoring data). Depending on the

data, one might have to adjust the limits of the distribution (see Section "The effect of prior

distributions on completeness of posterior distributions" for details).

In the next section, we describe how to parameterize the model and run model simulations

using FSKX format.

Simulations

All  model  parameters  and  their  descriptions  are  presented  in  Table  1.  Two simulation

scenarios are provided in the fskx-model (see Table 2 for the parameter values of both

scenarios and Suppl. material 1 for the fskx-model). The default simulation considers the

data of the baseline study (see Section "Baseline data" for details). The second simulation

setting is based on the monitoring data (see Section "Monitoring data" for details).

Id list_sources

Classification INPUT

Name list_sources

Description List all possible sources

Unit []

Data Type INTEGER

Source Article

Table 1. 

Description of the model parameters of the source attribution model. In the row that specifies the

source, article always refers to the reference description of Jabin et al. (2019).
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Value c('Broilers', 'Laying hens', 'Pigs', 'Turkeys')

Id qfix_ind

Classification INPUT

Name qfix_ind

Description Indices of subtype‐dependent factor for subtype i (q ), which will be set to fixed values. These are the

four values for the human cases concerning the "unique types": S.Virchow, S.E. PT 1, S.T. DT 193,

and S. Saintpaul

Unit []

Data Type VECTOROFNUMBERS

Source Data

Value c(63,64,65,66)

Min Value 1

Max Value Number of considered subtypes

Id input_FileName

Classification INPUT

Name input_FileName

Description Name of the file that contains the analysed data

Unit []

Data Type STRING

Source Article

Value "Table2.csv"

Id OpenBUGS_parameter

Classification INPUT

Name OpenBUGS_parameter

Description The values that should be logged while running the OpenBUGS-model

Unit []

Data Type STRING

Source Article

Value c("source", "unknown", "a", "q", "lambdaexp")

Id OpenBUGS_niter

Classification INPUT

i
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Name OpenBUGS_niter

Description Number of total iterations per chain used in the OpenBUGS-model

Unit []

Data Type INTEGER

Source Article

Value 30000

Min Value OpenBUGS_nburnin+1

Id OpenBUGS_nburnin

Classification INPUT

Name OpenBUGS_nburnin

Description Length of burn in, i.e. number of iterations to discard at the beginning.

Unit []

Data Type INTEGER

Source Article

Value 10000

Min Value 1

Id aValue

Classification INPUT

Name aValue

Description Values for the source-dependent factors (a ) that are used to determine inital values for the

OpenBUGS model

Unit []

Data Type VECTOROFNUMBERS

Source Data

Value c(0.002,0.001,0.19, 0.18, 0.178)

Min Value 0

Id qValue

Classification INPUT

Name qValue

Description Values for the subtype-dependent factors (q ) that are used to determine inital values for the

OpenBUGS model

i

i
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Unit []

Data Type VECTOROFNUMBERS

Source Data

Value c(0.001,0.002, 0.199, 0.18, 0.175)

Min Value 0

Id OpenBUGS_model

Classification INPUT

Name OpenBUGS_model

Description The filename of the txt-file that contains the OpenBUGS-model

Unit []

Data Type STRING

Source The filename is freely chosen. The BUGS-model is descrided in the reference article.

Value "BugsModel.txt"

Id mean_res

Classification OUTPUT

Name mean_res

Description Mean number of estimated human salmonellosiscases attribute to potential sources

Unit Cases

Data Type VECTOROFNUMBERS

Min Value 0

Max Value 1

Id quantil_95

Classification OUTPUT

Name quantil_95

Description 95%-quantile of estimated human salmonellosiscases attributed to the potential sources

Unit Cases

Data Type VECTOROFNUMBERS

Min Value 0

Max Value 1

Id quantil_05
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Classification OUTPUT

Name quantil_05

Description 5%-quantile of estimated human salmonellosiscases attributed to the potential sources

Unit Cases

Data Type VECTOROFNUMBERS

Min Value 0

Max Value 1

defaultSimulation 

list_sources c('Broilers', 'Laying hens', 'Pigs', 'Turkeys')

qfix_ind c(63,64,65,66)

input_FileName "Table2.csv"

OpenBUGS_parameter c("source", "unknown", "a", "q", "lambdaexp")

OpenBUGS_niter 30000

OpenBUGS_nburnin 10000

aValue c(0.002,0.001,0.19, 0.18, 0.178)

qValue c(0.001,0.002, 0.199, 0.18, 0.175)

OpenBUGS_model "BugsModel.txt"

SimulationTable3 

list_sources c('Broilers', 'Laying hens', 'Pigs', 'Turkeys')

qfix_ind c(30,31,32,33)

input_FileName "Table3.csv"

OpenBUGS_parameter c("source", "unknown", "a", "q", "lambdaexp")

OpenBUGS_niter 30000

OpenBUGS_nburnin 10000

aValue c(0.01, 0.015, 0.099, 0.08,0.02)

qValue c(0.001, 0.002, 0.9,0.85, 0.99)

OpenBUGS_model "BugsModel.txt"

Table 2. 

The simulation settings for the source attribution model. The settings specify the parameter names

and the values (see Table 1 for details about the parameters).
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The Bayes DB model is implemented in the programming language R (R Core Team 2019

).  In  addition  to  R,  the  open  source  software  OpenBUGS  is  required  to  successfully

execute the model (Neal 2009). The linkage between both software tools is done by the R

package "R2OpenBUGS" (Sturtz et al. 2005 ; see file "packages.json" in the fskx-model).

The fskx-model can be executed, developed further, and easily adapted to new data on the

local  computer,  e.g.,  using  the  KNIME  extension  FSK-Lab  (see  https://

foodrisklabs.bfr.bund.de/fsk-lab/ and de Alba Aparicio et al. (2018)).

Executable model
To be able to execute a model, you need to have an account registered with 
https://data.d4science.org/.
Read more here. 

In  order  to  execute  the  model,  please  register  at  the  virtual  research  environment

"FMJ_Lab".

Execute with default simulation parameters: execute

The default simulation runs for 2 minutes 11 seconds on the virtuel research environment.

Execute another simulation scenario or create a personalized scenario: execute

Results

The main result is that the existing source attribution model previously published in Jabin et

al. (2019) is available in the ready-to-use FSKX-format. The format is an open information

exchange  format and  uses  model  metadata  and  controlled  vocabulary  to  harmonise

annotations. The transformation into an FSKX compliant model took about one day of work

for a person already familiar  with the format.  In the FSKX compliant  format the model

predicts the same source attribution as in the original version as the R and the OpenBUGS

code is nearly identical to the code used in Jabin et al. (2019).

To be able to successfully use the model, it is important to know how to set up and run the

model as well as assess the appropriateness of the results. We present these practical

issues since this is a purely technical paper it seems appropriate to provide this level of

technicality here.

Successfully  executing  a  Bayesian  model  using  Markov  chain  Monte  Carlo
simulations

When running our Bayesian model using Markov Chain Monte Carlo (MCMC) methods, we

studied three important aspects of model diagnostics. To ensure a high quality estimation

of  unknown  parameters,  we  check  the  following  aspects  of  a  MCMC  method:  the
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convergence behaviour of the Markov chains, the completeness of posterior distributions,

and the consistency of results.

The effect of prior distributions on completeness of posterior distributions

The limits for the uniform distribution have a strong influence on the completeness of the

posterior distributions. The limits are incorporated into the OpenBUGS code of the model

(see file "BugsModel.txt" in the fskx-model). In the Bayes DB model, the lower limit is 0 and

the upper limits are 0.2 for  and 1 for  for both datasets (see

Section "Bayes data-based (DB) model—a variation of the David model" and Expressions

5 and 6). The upper limits were chosen such that the model provides complete posterior

distributions. This was assured by examining visually the plots of the posterior distributions

of   and   (Hald  et  al.  2004;  and  Fig.  1 in  this  paper).  If  one

changes the upper limit of the prior distribution of  to 0.2, incomplete posteriors

were obtained. In Fig. 1, there is an example for a complete and an incomplete posterior

distribution (Subfigures A) and B), respectively). The incomplete posterior distribution is a

trimmed version of  the complete  one.  Please note  that  issues in  the completeness of

posterior distributions might only occur in some but not all of the model parameters.

Figure 1.  

The posterior distributions for the fifth entry in the list of Salmonella subtypes (q ), which is S. 

enterica serotype Enteritidis PT 21, as a function of the possible values of q .  The shown

posterior distributions are calculated by the Gibbs-Sampler software OpenBUGS using the

Bayes DB model presented in Jabin et al. (2019) for the monitoring data and a sample size of

1e .  Subfigure  A)  shows  the  posterior  distribution  calculated  for

.  The  chosen  limits  of  the

uniform distribution lead to a cut off in the posterior distribution. When enlarging the interval

defining  the  prior  distribution  to

,  then  a  complete  posterior

distribution is produced by OpenBUGS (see Subfigure B)).

 

5
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The effect of initial values on convergence and uncertainty estimates

The choice of the starting values of the Markov chains (also known as initial values) has an

impact on the convergence and uncertainty estimates of the model calculation. The model

runs with five Markov chains. The default starting values for the five chains are listed in

Table  1;  the  parameter  names  for   and   are  "aValue"  and

"qValue", respectively. This means that the Markov chains for each unknown parameters

start with five different, but predefined, starting points. The effect of initial values on the

convergence and uncertainty estimates will be exemplified using the baseline data in three

parameter  scenarios.  The parameter  scenarios  differ  in  their  corresponding  set  of  five

starting  points  for  their  five  Markov  chains.  The  parameter  scenarios  exemplify  the

following  effects:  successful  convergence  (Parameter  scenario  1),  slow  convergence

(Parameter  scenario  2),  and  no  convergence  (Parameter  scenario  3).  The  parameter

scenarios are represented graphically in Figs 2, 3, 4 which show the starting points for the

Markov chains in scatter plots, convergence behaviour of the Markov chains in trace plots,

and the result of the source attribution estimates in bar plots. The bar plots include error

bars which correspond to a 90 % equal-tailed interval (i.e. the interval between the 0.05-

quantile and the 0.95-quantile of the posterior distribution of the number of human cases).

The error bars represent the uncertainty in the model estimation; the bigger the bars the

higher the uncertainty.
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Figure 2.  

Starting  points  for  the  Markov  chains  of  Parameter  scenario  1,  their  effects  on  the

convergence behaviour and the model predictions. The starting points are evenly spaced in

the lower fifth of the space of possible starting points (see the points in the scatter plot in the

upper right corner). With this set of starting points, Markov chains converge quickly as can be

seen in the four trace plots on the left hand side which show how the paramter values that the

model estimates change through the iteration steps of the model calculations. Each of the four

trace  plots  correspond  to  one  model  parameter  ( ,   and

, where types 1, 2 and 3 correspond to S. enterica serotype Enteritidis PT 11,

PT 14b, and PT 19, respectively). In each trace plot there are five traces, one trace for each

Markov chain. Each Markov chain has its own colour. The predicted source attribution shows

small error bars (see the bar plot).
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Figure 3.  

Starting  points  for  the  Markov  chains  of  Parameter  scenario  2  and  their  effects  on  the

convergence behaviour and the model predictions. The starting points are concentrated near

the points (0, 0) and (0.18, 0.18) (see the points in the scatter plot in the upper right corner).

With this set of starting points, Markov chains converge slowly as can be seen in the four trace

plots on the left hand side which show how the paramter values that the model estimates

change through the iteration steps of  the model  calculations.  Each of  the four trace plots

correspond to one model parameter ( , , where types 1, 2 and

3 correspond to S. enterica serotype Enteritidis PT 11, PT 14b, and PT 19, respectively). In

each trace plot there are five traces, one trace for each Markov chain. Each Markov chain has

its own colour. The predicted source attribution shows small error bars (see the bar plot).
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In Parameter sScenario 1, the starting points are evenly spaced in the lower fifth of the

plane of  possible  starting  values (see Fig.  2).  The error  bars  in  the source attribution

results are small (see bar plot in Fig. 2).

In Parameter scenario 2, the starting points are concentrated near two points: one point is

(0, 0) the other (0.18, 0.18) (see Fig. 3). The Markov chains converge slowly for some

parameters, e.g.,  and in the trace plot of Fig. 3. The error bars

of the model results are large (much larger than in the previous parameter scenario) (see

bar plot in Fig. 3).

Finally, the starting points cluster near two points: one point is (0, 0.18) the other (0.18,

0.18) (see Fig. 4). In this parameter scenario, the Markov chains do not converge at all

within  the  30,000  iterations  for  some  parameters,  e.g.,  for   and

(the trace plot of Fig. 4). Consequently, the error bars of the model results are

larger than in the previous two parameter scenarios (see bar plot in Fig. 4).

Figure 4.  

Starting  points  for  the  Markov  chains  of  Parameter  scenario  3  and  their  effect  on  the

convergence behaviour and the model predictions. The starting points are concentrated near

the points  (0,  0.18)  and (0.18,  0.18)  (see the points in the scatter  plot  in  the upper right

corner).  With this  set  of  starting points  the Markov chains do not  converge within 30,000

iterations for the parameters  or  as can be seen in the four

trace plots on the left hand side which show how the paramter values that the model estimates

change through the iteration steps of  the model  calculations.  Each of  the four trace plots

correspond to one model parameter ( , , where types 2 and 3 correspond to S.

enterica serotype Enteritidis PT 14b and PT 19, respectively). In each trace plot there are five

traces, one trace for each Markov chain. Each Markov chain has its own colour). The error

bars of the predicted source attribution are large (see the bar plot).
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The  effect  of  consumption  data  on  the  consistency  of  source  attribution
estimates

Some authors pointed out that the parameter for consumption data, ,

are not essential for the approach (Mughini-Gras and van Pelt 2014, Mullner et al. 2009, 

Wahlstrom et  al.  2011).  According  to  them,   serves  as  a  scaling

factor for  and could be omitted (as done in Mullner et al. (2009), Wahlstrom

et al. (2011)). The approach of setting  to 1, caused problems for the

Bayes  DB  model.  Problems  are  either  numerical  issues  or  inconsistent  results.

Inconsistency means that the predicted number of human cases for a certain subtype is

not in the same order of magnitude of the number of human cases found in the data (in

such cases we found that the number of observed cases could be up to a factor of 2000

larger than the model estimates).

Simplifying the Bayes DB model for the baseline data by setting all 

to  1  and  keeping  the  prior  distributions  as  they  were  defined  in  Expression  5  and

Expression  6  caused problems.  OpenBUGS was not  able  to  successfully  execute  the

model,  due to  numerical  problems (OpenBUGS reports  an "conjugate  gamma updater

error" for one of the ). This problem disappeared when the prior distributions for

 were changed to  but

the model results remained inconsistent. Changing the prior distribution for 

to  led to consistent results.

For the monitoring data, setting all  to 1 and using prior distributions

as defined in Expression 5 and 6 led to inconsistent results. The model worked properly

when  priors  distributions  were  set  to

 while  the  priors  for  

remained the same as in Expression 6 (cf. Fig. 5).
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One way to interpret the need for enlarging the priors for  and  is

that  parameters   and   must  compensate  for  the  restrictions

applied  to  .  One may consider   and   as

complex priors distributions that combine estimates of the potential of the Salmonella of

type   and  the  source   to  cause  salmonellosis.  In  summary,  if

 is simplified, the prior distributions may need to be adjusted.

Source attribution determination

Source attribution methods aim to identify and quantify the contribution of different sources

to disease burdens like salmonellosis (Jabin et al. 2019). The human salmonellosis cases

are  attributed  to  different  sources  (namely  broilers,  laying  hens,  pigs,  turkeys,  and

unknown).  In  Fig.  6A,  the  number  of  human cases  of  Salmonella subtypes  in  animal

sources from the baseline studies 2004–2007 are presented. The source that causes the

majority of salmonellosis cases is laying hens while turkeys cause the smallest burden of

the considered sources. The results for the monitoring data (2010/2011) are presented in

Fig. 6B. The majority of cases here results from unknown sources. Closely followed by

laying hens and pigs. A relatively low burden results from turkeys.

Figure 5.  

Model-data fit when setting =1 and using different parameterizations.

Each point in the figure corresponds to one bacterial subtype. Subfigure A shows a consistent

model  fit  due  to  using  the  prior

.  I.e.  the  logarithm  of  the

number of cases as found in the data corresponds well to the logarithm of predicted number of

cases.  Subfigure  B  shows  an  inconsistent  model  fit  due  to  using  the  prior

.  Here,  the  model

systematically underestimates the number of cases for the subtypes as the points gather well

below the identity line.
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The presented results  allow to  analyse the quantity  of  the  burden assignable  to  each

source and provide the basis to compare different datasets. Although the baseline and the

monitoring  data  are  comparable  and  no  significant  difference  between the  datasets  is

expected (see Section "Data" for details), it provides the basis for comparison. There is

much more to say about the model and its results but we focus here on the technical

aspects of making the model FSKX compliant and some of the model mechanics. For a

more detailed discussion of the model and its results see Jabin et al. (2019).

Discussion

Modelling of source attribution is a powerful approach that can contribute to the reduction

of human zoonotic cases, in particular salmonellosis. However, model results are highly

sensitive to changes of multiple parameters that can differ for each model. In the presented

model, these parameters include the initial values for observed Salmonella cases and the

assumption about the consumption data. If someone aims to reproduce the model results,

this is only possible if the parameter settings are identical to the original settings. In other

words, slight changes in a model parameter might result  in a big change in the model

prediction and thus, the results presented in an article or report cannot be reproduced. The

issue of reproducible results is a general challenge in science (Baker 2016, Goodman et al.

2016). It might seem that in computational work it is in principle easy to re-use and share

the used data and the used code in order to reproduce results (except for variations when

the model calculations include probabilistic elements). Nonetheless, there is a problem with

reproducibility in this area as well (Waltemath and Wolkenhauer 2016, Stodden et al. 2018,

Tiwari  et  al.  2021,Miłkowski  et  al.  2018).  It  can  be  hard  to  re-use  one own modestly

Figure 6.  

Bar plot of number of human cases of Salmonella infection attributed to different sources.

Subfigure A shows the result for the baseline data 2004–2007 (the so-called defaultSimulation

in  Table  2)  and  Subfigure B  the  results  for  themonitoring  data  2010/2011  (the  so-called

SimulationTable3 in Table 2).
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documented models; it can be particularly challenging to re-use models developed by other

authors (see Topalidou et al. 2015 for an illustrative example). Problems arise from the

limited amount of documentation and versioning of the code and/or insufficient information

about the model  scope (Stodden et  al.  2018, Waltemath and Wolkenhauer 2016).  The

consequence of the reproducibility/sharing problem is that models are re-invented and re-

implemented;  a  time-consuming  and/or  error-prone  process.  Several  approaches  have

been discussed in the literature to remedy these problems (Grimm et al. 2014, Wilson et al.

2017, Schölzel et al. 2021, Kim et al. 2018, McDougal et al. 2016, Tiwari et al. 2021). All

approaches come down to a combination of standardized way to document the model and

to choose ways to store and share computational resources like data and model code

platform independently. FSKX format is an open information exchange format that provides

a way to create well-documented and reproducible mathematical risk assessment models

that are annotated in a harmonised way using model metadata and controlled vocabulary (

de Alba Aparicio et al. 2018).

The implementation of  a model  in  a standardized and annotated exchange format like

FSKX-format  is  a  way that  focuses on long-term usability  and understandability  of  the

model. The community as well as the creators would benefit from such an approach. One

example where a creator developed a model with an FSKX conform end-product in mind is

the work of Plaza-Rodríguez et al. (2019).

Much  time-consuming  and/or  error-prone work  can  be  saved  in  the  future  if  model

development  is  done  with  a  mind-set  of  long-term  usability,  reproducibility,  and

understandability. The FSKX format enables sharing model code reliably and reproducibly

and thus paves the way for successful collaboration and further development of models.

Conclusion

In  this  work,  we  demonstrated  that  it  is  straight  forward  to  take  a  Bayesian  source

attribution  model  running  under  R  and  OpenBUGS originally  published  in  Jabin  et  al.

(2019), and translate it  into the Food Safety Knowledge Exchange (FSKX) format. This

standardized  format  provides  an  annotated  model  together  with  relevant  simulation

settings. The ready-to-use model can be executed in this "executable paper" and on the

local computer, e.g., using software like the KNIME extension FSK-Lab (de Alba Aparicio et

al. 2018). In addition, it is easy to re-use the model code and interpret simulation results. In

conclusion,  we  provide  an  annotated,  ready-to-use  source  attribution  model  and  the

considered Salmonella datasets and by that facilitate model exchange, adjustment, and re-

use by the international and multi-sectoral One Health community.
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